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Quality assurance has been one of the major challenges in laser-based additive 

manufacturing (AM) processes. This study proposes a novel process modeling methodology for 

layer-wise in-situ quality monitoring based on image series analysis. An image-based 

autoregressive (AR) model has been proposed based on the image registration function between 

consecutively observed thermal images. Image registration is used to extract melt pool location 

and orientation change between consecutive images, which contains sensing stability information. 

Subsequently, a Gaussian process model is used to characterize the spatial correlation within the 

error matrix. Finally, the extracted features from the aforementioned processes are jointly used for 

layer-wise quality monitoring. A case study of a thin wall fabrication by a Directed Laser 

Deposition (DLD) process is used to demonstrate the effectiveness of the proposed methodology. 
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CHAPTER I 

INTRODUCTION 

Additive Manufacturing (AM) processes add material in layer-by-layer fashion to achieve 

the final geometry, which enables new design options that cannot be obtained through 

conventional manufacturing technologies [1]. Nevertheless, quality issues of AM parts are major 

barriers preventing wider industrial adoption of AM. Due to the existence of defects such as 

porosity and cracking, the mechanical properties of additively manufactured parts can hardly 

satisfy the strict requirements of industrial application. AM processes are governed by the process-

structure-property (PSP) relationship. Once the PSP relationship is established, the build structure 

and properties can be predicted. Direct Laser Deposition (DLD), is one of Laser Based Additive 

Manufacturing methods that melts the powder or wire as row material by irradiation of a laser 

beam. The melt-pool (or molten pool) is created when metal powder/wire delivered to a mobile 

substrate is simultaneously exposed to a relatively high-powered laser. As illustrated in Figure 1.1 

a focused laser beam irradiated laser using turning mirrors in one direction with a single powder-

spray nozzle or multiple nozzles. The thermal energy produced by laser melts the material (powder 

or wire) injected on the substrate. That creates the molten metal on top of a heat affected zone 

(HAZ) [2], [3]. However, wire-fed DLD is sometimes regarded as a more efficient way since 

Powder preform is injected through nozzle that can cause an agglomerate of remained powder. 

However, wire-fed DLD is sometimes regarded as a more efficient way since powder preform is 

injected through nozzle that can cause an agglomerate of remained powder [4]. 
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Figure 1.1 Direct laser deposition schema 

 

The challenges confronting layer-based process anomaly detection are two-fold: 1) there 

is a huge amount of uncertainty in the relationship between the compositional and process 

parameters in the basic thermo-mechanical process of metal printing; 2) the advanced sensing 

technologies provide high volume of noisy thermal history data that represent complex spatio-

temporal relationship. To model correlation between thermal history and microstructure 

properties, finite element methods (FEMs) have been widely used. The thermal behavior and 

temperature distribution and their effects on the stress, formation, and hardness of parts along with 

phase transformation during the AM process have been thoroughly studied in the literature [2,3]. 

However, there are some challenges in the FEM based approaches that hinder their application in 

online prediction [4]: 1) high computational cost required, making it extremely time consuming to 

implement in real time; 2) their high dependency on part geometry which makes it almost 

impossible to generalize between different designs; and 3) the deterministic nature of FEM related 

approaches, making it difficult to incorporate all sources of process uncertainty in the modeling 

for anomaly detection. 
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The advancement in sensing technologies has enabled real-time monitoring of thermal 

history for anomaly detection via infrared thermography, generating thermal imaging data streams 

with extremely large volume and complex structure. Although existing data-driven methods 

consider robust statistical methods to identify anomalies from thermal image [5-6], local features 

for prediction purposes are used in most of the existing work and, consequently, they cannot be 

directly utilized to distinguish the profile of an entire deposited layer. This being the case, layer-

wise process signature has received the attention of the AM community. Liu et al. [7] has modeled 

layer-wise spatial porosity evolution based on X-ray computed tomography (XCT), which is an 

expensive and time-consuming process. Furthermore, optical imaging systems have been used in 

laser powder bed fusion systems for layer-wise monitoring [8]. Moreover, layer-wise anomaly 

detection based on thermal history has also been proposed which incorporates a tensor-based 

dimension reduction and a convex-hull based variability characterization approach [9].  

The melt pool images are regarded as a most informative process signature for build 

structure prediction. Figure 1.2 shows a schematic plot of a Direct Laser Deposition Process (DLD) 

fabrication process monitored by a coaxial pyrometer. It is observed that whenever there is a shift 

occurring in the process, a significant change can be observed in the series of melt pool images 

captured in fabricating that shifted layer. Therefore, we propose to formulate the layer-wise 

thermal history as an image-based time series for layer-wise anomaly detection in the in-situ DLD 

process monitoring.  

In this study, a novel data-driven methodology is proposed to extract layer-wise process 

signatures from real-time thermal history for direct laser deposition (DLD) processes. AM process 

knowledge is leveraged to develop the novel approach. Therefore, the major assumption of the 

proposed methodology is that a stable thermal history leads to homogenous microstructure and 
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thus porosity-free deposited layers. As illustrated in Figure 1.2, when there is a layer height 

anomaly occurring in the process, the observed melt pool in the thermal image will shift in both 

shape and location. Based on this observation, process features can be proposed to quantify the 

change in the thermal image series obtained from fabricating one layer. Therefore, process features 

can be extracted from two sources in the thermal image series, 1) image registration information; 

and 2) first order difference of the registered thermal images. Subsequently, the extracted features 

are used for anomaly detection for each deposited layer in the DLD process. 

 

Figure 1.2  DLD process monitored by a co-axial pyrometer 

 

The rest of the study is structured as follows. chapter 2 provides a detailed literature review 

on the existing porosity detection techniques, following that the efforts on characterization of melt 

pool are briefly discussed. In chapter 3 the proposed framework for layer-wise process feature 

extraction and anomaly detection, while chapter 4 presents a case study of fabricating a thin wall 
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using a DLD process to validate the proposed methodology. Finally, chapter 5 summarizes the 

conclusion and potential future research directions. 



www.manaraa.com

 

6 

CHAPTER II 

LITERATURE REVIEW 

In this chapter, the state-of-the-art research on porosity detection and characterization for 

laser-based additive manufacturing is categorized into four groups, with each summarized in one 

subsection as follows. 

2.1 Post-manufacturing porosity detection and characterization 

Several studies focus on post-manufacturing inspection. Computed Topography (CT) and 

Magnetic Resonance Imaging (MRI) are used to detect the internal defects in the product as well 

as the measurement of shifts from designed model [5]. Du Plessis et al, investigated the 

measurement of minimum detectable pore size regarding CT adjustment, which reveals the 

advantages of additive manufacturing over casting [6]. Porosity characterization in casting process 

has been discussed by Wilczek, in which they analyzed non-destructive tests including ultrasonic, 

radiographic, eddy current and pulsed infrared thermography for performance comparison [7]. 

Due to the widespread use of additive manufacturing, there has been an increasing demand 

for the efficient methods to control the quality of products, Bernier et al. used X-ray tomography 

combined with 3D image analysis and they evaluated the effect of the parameters of X-ray 

tomography on image quality. The study also validated XCT for the porosity detection challenge 

in additive manufacturing powder feedstock [8]. 

Moreover, Chen et al. created a comprehensive comparison between three types of 

spherical Ti-6Al-4V powders in terms of microstructure, porosity, argon gas content and pore 
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spatial structure. They demonstrated that Synchrotron X-ray CT is a more beneficial tool to 

characterize pore morphology due to the high-resolution of this technology. Also, the analyzing of 

three-dimensional reconstructed images shows that any increase in the pore population, size and 

porosity within powders leads to moderately increase in particle size[9]. 

Many efforts have been done to improve the quality through collecting valuable data, 

therefore different methods have been used to obtain the data including porosity. Cnudde et al. 

compared 3 techniques of porosity data collection including water intrusion porosimetry, micro-

CT and water absorption under vacuum, besides, advantages and disadvantages of these 3 

techniques were discussed [10].  In other works, it has been concluded that depending on pore size 

and pore structure, mercury intrusion porosimetry results can be more or less illustrative [11]. 

When it comes to process optimization and quality control for AM production, post-

manufacturing quality control approaches are usually very expensive, and sometimes even 

destructive. Furthermore, it is worth noting that the post-manufacturing approaches, sometimes 

also called offline approaches, can be adopted only after the product is fabricated. Therefore, those 

techniques cannot facilitate in-situ decision making and process adjustment during the AM process 

to improve part quality [12]. 

2.2 Melt-pool thermodynamics, monitoring and modeling  

Due to the widespread use of laser welding process, Mazumder et al. (1996) collected 

modelling studies on laser heat treatment including Directed Energy Deposition processes. The 

study shows the remarkable effect of heat transfer and fluid flow in the weld pool on the 

characteristics of the weld seam produced by the laser welding in DED process including 

microstructure, distortion, residual stress, etc. [13]. 
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A multivariate model is stablished by Wang et al., which emphasizes the impact of material 

transfer rate parameters for directed energy deposition. The steady-state melt-pool geometry and 

temperature are also predicted using the model [14]. 

Letenneur et al. studied the laser powder bed fusion (LPBF) process and stablished a 

density prediction algorithm. Certain range of values are considered for manufacturing parameters 

including laser power, scanning speed, hatching space, and layer thickness. Densities of fabricated 

parts has been calculated as response value and the melt pool dimensions are measured using a 

simplified melt pool model. and the gathered data were analyzed to predict the density of printed 

parts [15].  

Heat transfer and residual stress evolution in the direct metal laser sintering process are 

assessed by Zhao et al. regarding the temperature-based features of TiAl6V4. Also, a 2-D model 

and a 3-D model are developed to analyze the single- layer laser sintering and multi-layer effects 

consequently. melt pool size, temperature history, and change of the residual stresses of a single 

layer and among the multiple layers of the effects of the change of the local base temperature and 

laser power etc. The study shows the changes in melt pool size, temperature history and residual 

stress of each layer individually [16]. 

For processing of laser powder bed fusion, an integrated physics-based and statistical 

modeling approach is developed by Criales et al. to predict temperature field and melt-pool 

geometry. Temperature fields during the scan and hatch directions have been simulated using 2-D 

finite element simulations which helps to characterize the melt-pool changes [17]. 

Konrad Bartkowiak, and Mikhail Vasiley have studied the feasibility of applying real time 

monitoring spectroscopy for different solid state and CW laser systems. Using online digital 

imaging the spectra emission lines are recorded which explains the changes in melt pool 
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composition during DLD process. The image processing delivers remarkable information 

including size and shape changes of the plasma plume and melt pool during laser irradiation on 

metal powder [18]. 

The importance of recoil pressure and Marangoni convection in shaping the melt pool flow 

in studied by Khairallah et al. Also, the laser bed-fusion process is analyzed to find how the 

denudation, spattering, and pore defects appear in the surface of fabricated part. They finally 

concluded that in order to reduce porosity, deep and narrow depressions should be prevented, laser 

intensity should decrease when the direction changes along a scan track [19]. 

Thermomechanical simulations are widely used to study the behavior of melt-pools during 

solid freeform fabrication (SFF) processes. Process maps are sort of quasi-non-dimensional plots 

which are developed by Thermal simulations in order to quantifies the effects of changes on melt 

pool length over the full range of relevant process variables [20]. Vasinonta et al utilized Process 

maps to reduce the residual stress by adjusting a set values for production parameters including 

wall height, laser power, deposition speed, and part preheating. The recommended strategy at this 

study for obtaining an optimal melt pool size is to uniformly preheat the part to reduces the stress, 

also, applying slight reductions in laser power or increases in laser velocity [20]. Moreover, Gockel 

et al. utilized using finite element analysis to investigate a solidification microstructure process 

map. At this study a proportional size scaling between beta grain widths and melt pool widths has 

been recognized and finally it is indicated that controlling the melt pool dimension control enables 

to control solidification microstructure [21]. 

Geometrical accuracy is one of functional features that helps to characterize the thermal 

behavior of molten pool in order to distinguish between healthy and non-healthy melt-pools. Hu 

and Kovacevic investigate a three-dimensional finite element model using ANSYS to study the 
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thermal behavior of the molten pool for building a single bead stainless steel wall while the laser 

power is controlled to keep the width of the molten pool constant [22].  

2.3 Melt-pool characterization and monitoring based on in-situ measurements 

There are two types of measurements that can be used for anomaly detection in laser based 

additive manufacturing systems, optical imaging sensors and thermal imaging sensors. Helaric et 

al. recommends camera-based feedback for on-line control of the laser metal wire deposition, 

however, with certain caution due to measurement disturbances. The melt pool width is obtained 

using an optic camera [23]. Hu and Kovacevic developed a close-loop control system based on 

infrared image sensing to characterize the molten pool in Laser Based Additive Manufacturing 

process. The system is consisting of a high frame rate camera located above the laser head that 

captures gray images [24]. 

Thermal imaging has been used as an efficient tool for anomalies detection both in online 

monitoring and for part inspection. The porosity inside the part can be detected through image 

processing which helps to control the final quality. Khanzadeh et al. developed a method to 

characterize the melt pool by processing thermal images. The images of ill-structured melt pools 

have been fed to the supervised learning method to predict the porosity in single track thin walls 

fabricated by direct laser deposition [25]. For the same purpose, Seifi et al. analyzes thermal 

images provide by a co-axial pyrometer camera. In order to label the data, the melt pools locations 

have been matched with corresponding XCT scanning images which detects the porosity inside 

the part [26]. 

It is worth noting that most of the existing studies focus on post-manufacturing porosity 

prediction that is less effective comparing with online monitoring in terms of process cost. 

Furthermore, in situ monitoring can help to uncover the causes of defects while post-
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manufacturing is destructive. Khanzadeh et al. proposed a method to model the non-healthy melt 

pool by quantifying and characterizing the temperature distribution of the top surface of the melt 

pool. The model is capable of detecting process anomalies in the noisy melt pool signals during 

the manufacturing process [27]. 

2.4 Video analysis for additive manufacturing monitoring  

The widespread use of machine vision systems in additive manufacturing technologies 

could lead to the demand for image-based statistical process monitoring methods. Moreover, large 

amounts of data generated in new formats (i.e., video images) captured at high speed needs could 

be analyzed via big data methods in order to detect and predict the defect during production. 

Colosimo and Grasso proposed a novel approach based on spatially weighted PCA 

(Principal Component Analysis) characterizing the spatiotemporal features of the process 

represented in the monitored video image data. Also, the k-means clustering-based is applied to 

develop an alarm rule which is capable of automatic defect detection [28]. Yan et al. suggested a 

decomposition-based approach with the aim of real time monitoring and anomaly detection. 

Therefore, Video-imaging data are processed to extract features through spatio-temporal 

variability in order to decompose the original data into random natural events, sparse spatially 

clustered and temporally consistent anomalous events, and random noise [29]. 

However, those methods are mostly pure data-driven methods which do not take into 

account the AM process knowledge in the analysis.  
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CHAPTER III 

METHODOLOGY AND MODELING 

3.1 Data description and challenges 

Thermal history indicates the thermal response during AM fabrication as a function of time, 

which is represented by an image series (video) captured by a pyrometer camera during the build. 

In the thermal images, a region of superheated molten metal is defined as the melt pool [3]. As a 

key signature of the fabrication process, the melt pool initiates the solidification process in AM 

and thus is informative to predict part porosity information. Each melt pool image contains 

location-based temperatures, and each layer can be considered as a series of images. Most of the 

currently available approaches use individual melt pool image for anomaly detection at the specific 

location where the melt pool is observed during the fabrication. However, plenty of spatio-

temporal correlation information presents in the image series which can be used for anomaly 

detection and quality prediction. The monitoring of layer-wise thermal history is challenging due 

to 1) complex spatio-temporal correlation, 2) high dimensionality of thermal images, 3) discrete 

data sampling, and 4) unreliable and missing data.  

3.2 Thermal image series analysis 

In this subsection, the proposed framework for modeling the thermal image series collected 

from fabricating one layer is briefly described. A thermal image time series collected from 

fabricating one layer can be modeled as an image-based autoregressive model, 
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𝑋𝑡+1 = 𝑓𝑡+1(𝑋𝑡 , 𝛀𝑡) + 𝜀𝑡+1 (3.1) 

 

where 𝑋𝑡 denotes the thermal image with a dimension of 𝐼 × 𝐽 collected at time stamp 𝑡 

(𝑡 = 1,2, … , 𝑇𝑙 − 1) in which 𝑇𝑙 denotes the number of images collected when fabricating the 𝑙-th 

layer. It is worth noting that 𝑇𝑙 is possible to vary for different layers; 𝑓𝑡+1 is an image registration 

function between 𝑋𝑡 and 𝑋𝑡+1 in one layer characterized by a 3×3 transformation matrix 𝛀𝑡. 𝜀𝑡+1 

denotes an error matrix (with a dimension of 𝐼 × 𝐽) representing the piece of information that 

cannot be explained by the registration operation. A Gaussian process model is used here to 

characterize the error term 𝜀𝑡+1, and the detailed information is included in subsection 1.3.4. Figure 

3.1 shows the consecutive melt pool images as an image series, and briefly illustrates the proposed 

formulation in Equation (3.1). 

 

Figure 3.1 Layer-wise thermal image series formulation 
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3.3 Image registration 

Image registration is a widely used image processing technique that reveals some hidden 

relationship between the input and the reference images in applications such as health care industry 

[30], computer vision for target localization, automatic quality control, motion tracking, and 

cartography for map updating. A registration function is usually in the form of a coordinate 

transformation matrix.  

In this study, image registration is used to project 𝑋𝑡 to 𝑋𝑡+1 (𝑡 = 1,2, … , 𝑇𝑙 − 1) for the 

best alignment, and each registration function 𝑓𝑡 can involve operations including translation and 

rotation. More specifically, translation describes the shift magnitude in a 2D coordinate system 

between 𝑋𝑡 and 𝑋𝑡+1; rotation describes the orientation difference between 𝑋𝑡 and 𝑋𝑡+1. The image 

registration algorithm is performed in an iterative procedure to optimize a pre-defined similarity 

metric (such as mean square error). The image operations iteratively modify 𝑋𝑡 to best match 𝑋𝑡+1 

for a smaller mean squared error. The result of the image registration procedure is specified as a 

3×3 transformation matrix 𝛀𝑡 as follows, 

 

 

𝛀𝑡 = [

𝑎 𝑏 0
𝑐 𝑑 0
𝑡𝑥 𝑡𝑦 1

] (3.2) 

where 𝑎, 𝑏, 𝑐, and 𝑑 jointly specify the rotation operations, and 𝑡𝑥 and 𝑡𝑦 denote the number 

of pixels to shift the image in the horizontal and vertical direction, respectively. More specifically, 

two possible special cases of 𝛀𝑡 are discussed as follows. 

Case 1: When 𝑏 = 𝑐 = 0, 𝑎𝑛𝑑 𝑎 = 𝑑 = 1, 𝛀𝑡 specifies a registration function with a 

translation operation only;  



www.manaraa.com

 

15 

Case 2: When 𝑎, 𝑏, 𝑐, and 𝑑 satisfy 𝑎 = 𝑑 = cos 𝑞  𝑎𝑛𝑑 𝑏 = −𝑐 = sin 𝑞 where 𝑞 

represents the angle of rotation about the origin of the image, 𝛀𝑡 specifies a registration 

function with both rotation and translation operations; 

3.4 Gaussian process model 

Gaussian Process (GP) modeling technique has an advantage to develop the model with 

the help of identifying the structure of the covariance matrix of the explanatory variables. This 

feature makes the GP model more flexible than traditional approaches, which consider only the 

algebraic structure of the input–output relationship. Therefore, the GP model is able to capture 

strong nonlinearities and multivariate interactions in a systematic way. Derived from a Bayesian 

setting, the GP enables to combine and quantify separate sources of uncertainty in a natural way 

[31].  

The error term 𝜀𝑡 in Equation (3.1) is modeled as follows, 

 

 

𝜀𝑡~𝐺𝑃(𝛽𝑡 , 𝐾((𝑖, 𝑗), (𝑖′, 𝑗′)) + 𝜎𝑡
2𝐼) (3.3) 

where 𝑖 and 𝑗 denote the row and column indices of the pixel in the error term matrix 𝜀𝑡 

𝑖 = 1,2,3, … , 𝐼, 𝑎𝑛𝑑 𝑗 = 1,2,3, … , 𝐽. 𝛽𝑡 represents the mean of the Gaussian process 𝜀𝑡, whereas 

𝜎𝑡
2 shows the white noise variation of pixels. 𝐾(∙,∙) represents the kernel function used to 

characterize the covariance between the two different locations, i.e. (𝑖, 𝑗) and (𝑖′, 𝑗′). In Gaussian 

processes, the covariance function characterizes the correlation (similarity) between neighboring 

pixels within the 𝜀𝑡 matrix, which obviously have similar response values. In other words, it 

determines how the response at each pixel is affected by responses at other pixels. The covariance 
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function 𝐾(∙,∙) can be defined by various kernel functions, which can be parameterized in terms of 

different kernel parameters.  

In this study, Matern 3/2 covariance kernel function is used to characterize the spatial 

correlation in 𝜀𝑡’s as follows, 

 

𝐾 ((𝑖, 𝑗), (𝑖′, 𝑗′)|𝜎𝑙 , 𝜎𝑓) = 𝜎𝑓
2(1 +

√3𝑟

𝜎𝑙
)exp (−

√3𝑟

𝜎𝑙
) (3.4) 

 

 

where 𝑟 is the Euclidean distance between the two pixels (𝑖, 𝑗) and (𝑖′, 𝑗′), i.e., 𝑟 =

√(𝑖 − 𝑖′)2 + (𝑗 − 𝑗′)2, as illustrated in Figure3.2; 𝜎𝑙 is the characteristic length scale, and 𝜎𝑓 is 

the signal standard deviation [32]. It is worth noting that Quasi-Newton optimizer is used for 

parameter estimation in the GP.  

Figure 3.2 Distance between pixels in a thermal image 
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3.5 Layer-wise feature extraction 

There are two groups of features extracted to characterize the thermal image series: one is 

extracted from the transformation matrix obtained from the registration function, and the other is 

extracted from the estimated parameters from the GP models to characterize the error matrix. 

Image registration related features are extracted from the transformation matrix 𝛀𝑡. 

Without losing generality, it is assumed that the transformation can be achieved by a sequence of 

image operations as rotation and translation, i.e., 

 

 

𝛀𝑡 = [

𝑎 𝑏 0
𝑐 𝑑 0
𝑡𝑥 𝑡𝑦 1

] = 𝛀𝑡
R × 𝛀𝑡

T (3.5) 

where the rotation and translation parameters can be identified: 1) the rotation angle 𝑞 =

tan−1 (
𝑏

𝑎
); 2) the translation in horizontal and vertical directions are 𝑡𝑥 and 𝑡𝑦, respectively.  

Two features can be extracted from parameter 𝑞, 𝑡𝑥 and 𝑡𝑦. In order to extract a feature 

from translation, 𝑡𝑥 and 𝑡𝑦 are used to calculate the Euclidian distance shifted from the original 

image and registered image as follows,  

 

 

𝐸𝐷𝑙,𝑡 = √𝑡𝑥
2 + 𝑡𝑦

2 (3.6) 

In order to modify this variable for layer-wise prediction, the maximum of 𝐸𝐷𝑙,𝑡’s over the 

consecutive image pairs of a layer is considered, Therefore, the feature extracted from image 

registration translation will be presented as 
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𝐹𝑙
1 = max

1≤𝑡≤𝑇𝑙−1
{𝐸𝐷𝑙,𝑡} (3.7) 

 

 

 

Similarly, the feature to characterize the rotation operation can be calculated as 

 

𝐹𝑙
2 = max

1≤𝑡≤𝑇𝑙−1
{|𝑞𝑙,𝑡|} (3.8) 

The next category of features is extracted by parameters of GP model which are defined as 

𝐹𝑙,𝑡
3 = 𝛽𝑡 which is the maximum of 𝛽 over images of a layer, 𝐹𝑙,𝑡

4 = 𝜎𝑡 and 𝐹𝑙,𝑡
5 = 𝜎𝑡,𝐿; 𝐹𝑙,𝑡

6 = 𝜎𝑡,𝑓 

which are based on variation of pixels, characteristic length scale and the signal standard deviation, 

respectively. Again the maximum of each feature for a single layer is calculated to obtain the layer-

wise features as 𝐹𝑙
𝑖 = max

1≤𝑡≤𝑇𝑙−1
{𝐹𝑙,𝑡

𝑖 }, where 𝑖 = 3, 4, 5, 6. 

It is worth noting that when coaxial thermal monitoring systems are used, the location of 

the melt pools does not change over time under the normal processing condition. Therefore, Eq. 

(5) works for all different printing paths. However, Eq. (6) works only when the printing path is 

unidirectional, where the theoretical rotation angle equals to 0. However, for complicated scanning 

path, the calculated rotation parameter needs to be compared with the theoretical rotation based on 

the designed scanning path. As illustrated in Figure3.3, the moving direction of laser is changing 

over the time. In that case, 𝐹𝑙
2 feature is calculated as follows, 

 

𝐹𝑙
2 = max

1≤𝑡≤𝑇𝑙−1
{|𝑞𝑙,𝑡 − ∆𝜃𝑡,𝑡+1|} (3.9) 
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where ∆𝜃𝑡,𝑡+1 represents the theoretical rotation angle between the two consecutive melt 

pools. An example is shown in Figure3.3 in which two melt pools observed in a same layer have 

different moving directions, where ∆𝜃𝑡,𝑡+1 = 𝜃𝑡+1 − 𝜃𝑡. In other words, Eq. (7) is the general form 

of Eq. (6). The features from the error term apply to all different scanning paths as all the assignable 

changes should be incorporated in the registration operation. 

 

Figure 3.3 Consecutive thermal images with different moving direction 

  

3.6 Classification: Correlating layer signatures to structural quality 

When structural quality information, such as X-ray CT scanned results, is available. 

Supervised learning methods can be used to train a classification model. Support Vector Machine 

(SVM) is considered as a powerful classification technique with a diversity of kernel functions. 

By finding the best hyperplane that separates all data points of different classes, an SVM classifier 

can be trained using data labeled with X-ray CT evaluations. More specifically, a layer that 

contains at least one porosity is labeled as unhealthy, and a porosity-free layer is labeled as healthy. 

Among SVM classifiers, linear SVM is applied in this paper for simplicity and better 

interpretability. To achieve more flexibility, more sophisticated kernels such as Gaussian kernel 

or polynomial kernel can be used [33]. It is worth noting that various other machine learning 
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algorithms can also be applied to this problem. Comparing classification performance of different 

machine learning schemes is out of the scope of this study.
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CHAPTER IV 

CASE STUDY 

The performance of the proposed methodology is validated using a direct laser deposition 

process. A thin wall of 60 layers in total was fabricated using Ti-6AL-4V. During the fabrication, 

the thermal images of the melt pools related to different locations on the thin wall are captured by 

a pyrometer camera. The number of thermal images captured using co-axial pyrometer camera is 

1564 with each represented by a 480 × 752 matrix of pixels. The process setup parameters are 

summarized in Table 4.1 [34]. After the build was completed, the porosity structure inside the 

build was identified using an X-ray CT scan (Skyscan 1172). The X-ray examination indicated 

that 26 layers out of 60 layers of the thin wall include at least one porosity. Figure 4.1 illustrates a 

melt pool image series within a layer containing a porosity related to an unhealthy melt pool at 

t+17. It is worth noting that minimum size for a pore is 0.05𝜇𝑚.  

Table 4.1 LENS process design parameters for the thin wall. 

Scan speed 12.70 mm/s Starting offset from substrate 130.391mm 

Powder feed rate 0.060 g/s Determination of layer thickness 0.508 mm 

Determination of hatch spacing 0.508 mm Nozzle diameter 0.889 mm 

Power 300 W Substrate (stainless steel) 3.175 mm 
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For image registration, due to the printing path design was unidirectional, the orientation 

of the melt pool image should not change over time. Therefore, only translation operation is 

estimated in the transformation matrix 𝛀𝑡. Fabricating a thin wall, the melt pool only shifts from 

image to image and the melt pool is not subjected to rotation. Regarding that the only 

transformation that can be applicable is translation, the feature extracted from translation are the 

only feature extracted from the image registration process. The error term 𝜀𝑡’s was modeled using 

Gaussian process models, and the layer-wise features were obtained by calculating the maximum 

values for each feature.  

 

Figure 4.1 The image of a thin wall containing one pore in an unhealthy layer 

 

Leave-one-out validation was used to test the effectiveness of the proposed method. Table 

4.2 illustrates the confusion matrix after implementing the aforementioned model. Four layers out 

of 60 layers (6.67% of the total layers) are misclassified, in which two misclassifications for 
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healthy and two for unhealthy. The recall, precision, and F-score were considered as three 

measures to define the accuracy of the model and calculated as follows: 

 

 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.2) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4.3) 

where F-score is the harmonic mean of precision and recall. TP shows true positive layers 

which are unhealthy and predicted accurately as unhealthy. TN stands for true negative that 

illustrated the items that are accurately predicted as healthy. On the other hand, FN defines 

inaccurate prediction that are actually unhealthy, while FP shows inaccurate prediction that are 

actually healthy.  

 

Table 4.2 Confusion matrix for leave-one-out cross validation 

  Predicted 

  Healthy Unhealthy 

Actual 

Healthy 32  2  

Unhealthy 2  24  
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The results indicate that the recall and precision of leave-one-out cross validation are 

0.9231 and 0.9231, respectively, and consequently, the F-score is also 0.9231. This indicates that 

the classification model accuracy is reasonably high and can be used for layer-wise anomaly 

detection. One of the possible reasons for misclassification is the discrete data sampling for thermal 

history fails to capture the thermal image when the anomaly occurs. Consequently, some 

information will be missed. In addition, the X-ray CT scans may be subject to noise and error as 

well. Moreover, the proposed anomaly detection method does not consider effects of re-melting, 

which can potentially correct some of the porosities generated in the previous layer.
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

Lack of repeatability in the additively fabricated parts is one of the major challenges that 

hinders broader industrial applications of additive manufacturing processes. Possible build quality 

issues, such as internal porosity, deformation, and cracking, can lead to significantly compromised 

mechanical properties. Comprehensive studies including data-driven methods have been focused 

on local characterization for anomaly detection based on single thermal images. A layer-wise 

thermal image modeling framework can take into account the complex spatio-temporal 

relationship within the image series, which can potential achieve improved anomaly detection 

results. In this paper, the layer-wise thermal images are formulated as an image series, and an 

image-based autoregressive (AR) model has been proposed based on the registration function 

between consecutively observed thermal images. Multiple features are extracted from the AR 

model for each consecutive pair of images, and layer-wise features are extracted subsequently. 

Support Vector Machine method is used for anomaly detection based on the extracted layer-wise 

features. A case study based on a thin wall fabrication using a DLD process is used to validate the 

proposed methodology. The classification accuracy of the proposed method is reasonably high 

which makes the model capable of predicting defects. For future works, the represented model can 

be applied to the thermal image analysis of AM parts with more complicated geometry to evaluate 

the performance of the proposed method. Also, the tensor-based calculations can be used to take 

the advantage of matrix-based structure of data. 
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